Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 12—solutions

Exercise 1

Let (B¢)e[o,r] be a Brownian motion in [0,7] and a1, ag, b1, by deterministic functions of time. The general form of a
scalar linear stochastic differential equation is

dX; = (a1(t)X: + az(t))dt + (b1 (t) X + ba(t))dBy. (0.1)

If the coefficients are measurable and bounded on [0, T], we can apply our general result to get existence and uniqueness
of a strong solution (X¢);e[o,7) for each initial condition x.

1) When as(t) = 0 and by(t) = 0, (0.1) reduces to the homogeneous linear SDE
dXt = ax (t)Xtdt + bl (t)XtdBt (02)

Show that the solution of (0.2) with initial data x = 1 is given by

X, = exp (/Ot <a1(s) - ;b§(3)>ds + /Ot bl(s)st>.

2) Find a solution of the SDE (0.1) with initial condition X, = x.

3) Solve the Langevin’s SDE
dXt = CL(t)Xtdt + dBt, XO =X.

1) Write X, = ¢'* with V, = [ (a1(s) — 263(s))ds + [} b1(s)dB,. Then
dX, =e"dV, + %thd[V]t.
Plug the expression for V;
dx, = o ((al(t) - ;bf(t)> At + by (t)dBt> + %thbf(t)dt
= X ((ar(t)dt + by (t)dBy).

2) Consider a process (U;);>0 given by the solution of an homogeneous linear SDE, which by 1), is given

in explicit form by
t 1 t
U, = exp (/ (al(s) - 2b§(s)>ds +/ bl(s)dBS).
0 0

Now we want to find the coefficients az(¢) and by (t) such that X; = U;V;, where
dV; = a(t)dt + B(t)d By,
for appropriate maps « and 5. Applying It6’s formula
B(t)Ur = ba(t), and a(t)Us = a(t) — by ()ba(t).

To sum up

X, = U, <:c + /Ot a2(s) *518(3)62(5) ds + /Ot bz‘[](j)st).



3) Applying 2) with U; = exp (fot a(s)ds) we find

X, = exp ( /0 t a(s)ds> (Xo + /0 exp (- A ’ a(s)ds> dBu>.

Exercise 2

Let (92, F,P) be a probability space carrying a one-dimensional Brownian motion B, whose P-augmented filtration is
denoted by F. Fix positive constants 7' and v, and let ¢ be a bounded Fpr-measurable random variable.

1) Show that the process
Vi i= —ylog (EF [/ R]), 1 > 0,

is the first component of a solution to the BSDE with terminal condition £ (at T) and generator g with

2) Let b € R. Show that the process

2
Y; = — (Z;(T — t) — bBt + log (EP[EbBTg/’YLFt]))a t> Oa

is the first component of a solution to the BSDE with terminal condition £ (at T') and generator g with

1
g(z) == —522 —bz, z€R.

1) Let P:=eY/7. It is immediate to check that P is a (bounded) martingale in the Brownian filtration,
so that we can write using the martingale representation theorem

dP; = Q¢dBy,

for some Q € H?(R,F,P). Then, applying Itd’s formula to f(P;) where f(x) := —ylog(z) (recall that P is
positive by definition) gives the desired result.

2) The reasoning is the same: use 1) to get the dynamics for —vlog (]EP [ebBT’5/7|.7-"t}), and then apply It6
to get the dynamics of Y.

Exercise 3

Let (B:)i>0 be a Brownian motion defined on a probability space (2, F,P) and (X;):>o the unique solution of the SDE
dXt = f(Xt)dt + g(Xt)dBt, XO =z,

where f,g: R — R are Lipschitz-continuous functions.

1) Find a non-constant function ¢(x) € C?(R,R) such that Y; := ¢(X;) is a local martingale. Moreover, derive a
SDE for (Y} )o.

Hint: Prove and use that general solution of the ODE: y'f(z) + 1y”g?(z) = 0 is of the form

y(a:)a+b/0wexp(2/0u

2) Assume additionally that f is negative on (—oo,0) and positive on [0, 00). Show that in this case, Y is a martingale.

f(v) 2
200) dv) du, (a,b) € R



1) Applying It6’s formula, we obtain that P-a.s., for all ¢t > 0

Y= 0(X) = o(a) + [ 0008+ [ (#0070 + 50" Jas.

Thus, we obtain that Y is a local martingale if and only if for any = € R, ¢(z) satisfies the following
ordinary differential equation

§ (@) () + 59" (@)g" (@) = 0.

It is easy to check by direct integration that the general solution of the above ordinary differential is of

the form . .
_ _ f(v) 2
o(x)=a+b | exp 2 5—dv |du, (a,b) € R*. (0.3)
0 0 9%(v)
For the second part, let ¢(z) be of the form (0.3) with b # 0 (i.e. a non trivial solution). We first observe
that ¢ is continuous and increasing, hence the inverse function of ¢, denoted by ¢(~1, exists. From 1),
we know that P-a.s. for any ¢ > 0

t
Yi = 0(X0) = o(a) + [ (X)g(X.)dB. (0.4
0
Thus, as X; = ¢~ 1(Y;), we get that Y; satisfies the SDE

dY; = (¢' 067 (Yi)(go ™) (Ye)dBy, Yo = ¢(x).

2) As ¢(X) is a continuous local martingale of the form (0.4), it is enough to check that for any T > 0

EP[/OT (¢(X,)g(X,)) ds| < oo,

to conclude that (¢(X;)):>0 is a true martingale. First, we observe that due to our additional assumption
on f being negative on (—o0,0] and positive on (0,00), we obtain that

itelglszﬁ’(xﬂ < o).
Moreover, as g : R — R is Lipschitz-continuous, there exists a constant k£ > 0 such that
lg(x)] < 1g9(0)] + Klxl.
As for any (a,b) € R%, we have (a + b)? < 2(a? + b?), we obtain that
g(x)? < 2¢(0)* + 2k%2?.

We conclude that there are constants C, D > 0 such that

T T
EP[/ (qb’(XS)g(XS))QdS} < C—i—D]EP[/ des}
0 0
But this is finite as (X;);>o is by assumption the strong solution of the SDE
dXt = f(Xt)dt + g(Xt)dBt7 XO =,
and therefore, for any 7' > 0

IE]P[ sup |Xt|2] :EP[ sup Xt|2} < 0.
0<t<T 0<t<T

Exercise 4



1) Let (fi)¢>0 be an F-adapted, positive, increasing, differentiable process starting from zero and consider the fol-
lowing SDE

dX, = /f/dB,. (0.5)
Show that the process By, is a weak solution of (0.5).

Hint: in other words, given a Brownian motion (B;);>o and a function f satisfying the previous assumptions,
there exists a Brownian motion (B)¢>0, such that

dBy, = /fldB.

2) Recall that a solution of the SDE

dXt = —’)/Xtdt + O'dBt, X() =T, (06)
is called Ornstein—Uhlenbeck process. Show that an Ornstein—Uhlenbeck process has representation
X = e—’YtEw(t),
where 22t )
(e’ -1
t) = ——
vit) = =5,
and where (Et)tzo is a Brownian motion started at x.
3) Consider the SDE
dXt = O'(Xt)dBt, XQ =T, (07)

with o(z) > 0 such that

is finite for finite ¢, and increases to infinity, that is G(c0) = oo, P-a.s. Under these assumptions, the inverse of
G is well-defined, and we let

Ty 1= Gﬁfl).
Show that the process X; := B;, is a weak solution to the SDE (0.7).

1) Given the assumptions made on f, it admits an inverse g. Let then
~ gt
B = v/ fldBs.
0

By definition, we have that §ft satisfies the required equation, so we just need to check that Bisa
Brownian motion. It is direct to check that this is a continuous local martingale and that

B, = [ fids = (Foa)®) - (Tog)0) =,

and we can conclude by Lévy’s characterisation.

2) Both the Ornstein—Uhlenbeck process and X as defined in the question are continuous, centred Gaus-
sian processes. it thus suffices to compute the covariance function to make sure that their distributions
match. Recall that if X is the Ornstein—Uhlenbeck process, we have for 0 < s <t

tAs

t s
CovP [Xt,XS] = Covl {e_'yt/ ae’Y“dBu,e_’ys/ aerBu} = e 7(tts) / a2t dy = e_'Y(H'S)z/J(S).
0 0 0

Then, using the covariance function for Brownian motion and the fact that 1 is non-decreasing

CovF[X;, X,] = o= 1(t+8) C o P [§¢(t)7§w(s)] - e_"/(t+3)w(s)7



hence the result.

3) The operator associated to the SDE is given by

1
Lf(z) = 50(@)f" (@)
We want to show that X; = B(7;) is a solution to the martingale problem for L. Take f € CZ, then we
know that the process

t
My f(B) = [ 5B

is a martingale. Moreover (7;);>o is an increasing sequence of stopping times and so the process M, is
a martingale. Now we want the find an explicit expression for the process 7. Using the formula for the
derivative of the inverse function,

—1)y/ _ 1 _ 1 _ =2
O Gy ey T ) 0

From (0.8) we see that (7;);>o satisfies dr; = 0~2?(B;,)dt. Now perform a change of variable s = 7, to obtain
that the process

£(B) = [ 503 (B)r (X

is a martingale and so (X;);>o solves the martingale problem for L.



