
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 12—solutions

Exercise 1

Let (Bt)t∈[0,T ] be a Brownian motion in [0, T ] and a1, a2, b1, b2 deterministic functions of time. The general form of a
scalar linear stochastic differential equation is

dXt =
(
a1(t)Xt + a2(t)

)
dt+

(
b1(t)Xt + b2(t)

)
dBt. (0.1)

If the coefficients are measurable and bounded on [0, T ], we can apply our general result to get existence and uniqueness
of a strong solution (Xt)t∈[0,T ] for each initial condition x.

1) When a2(t) ≡ 0 and b2(t) ≡ 0, (0.1) reduces to the homogeneous linear SDE

dXt = a1(t)Xtdt+ b1(t)XtdBt. (0.2)

Show that the solution of (0.2) with initial data x = 1 is given by

Xt = exp
( ∫ t

0

(
a1(s) − 1

2b
2
1(s)

)
ds+

∫ t

0
b1(s)dBs

)
.

2) Find a solution of the SDE (0.1) with initial condition X0 = x.

3) Solve the Langevin’s SDE
dXt = a(t)Xtdt+ dBt, X0 = x.

1) Write Xt = eVt with Vt =
∫ t

0
(
a1(s) − 1

2b
2
1(s)

)
ds+

∫ t
0 b1(s)dBs. Then

dXt = eVtdVt + 1
2eVtd[V ]t.

Plug the expression for Vt

dXt = eVt

((
a1(t) − 1

2b
2
1(t)

)
dt+ b1(t)dBt

)
+ 1

2eVtb2
1(t)dt

= Xt

(
(a1(t)dt+ b1(t)dBt

)
.

2) Consider a process (Ut)t≥0 given by the solution of an homogeneous linear SDE, which by 1), is given
in explicit form by

Ut = exp
( ∫ t

0

(
a1(s) − 1

2b
2
1(s)

)
ds+

∫ t

0
b1(s)dBs

)
.

Now we want to find the coefficients a2(t) and b2(t) such that Xt = UtVt, where

dVt = α(t)dt+ β(t)dBt,

for appropriate maps α and β. Applying Itô’s formula

β(t)Ut = b2(t), and α(t)Ut = α(t) − b1(t)b2(t).

To sum up

Xt = Ut

(
x+

∫ t

0

a2(s) − b1(s)b2(s)
Us

ds+
∫ t

0

b2(s)
Us

dBs
)
.
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3) Applying 2) with Ut = exp
( ∫ t

0 a(s)ds
)

we find

Xt = exp
( ∫ t

0
a(s)ds

)(
X0 +

∫ t

0
exp

(
−

∫ u

0
a(s)ds

)
dBu

)
.

Exercise 2

Let (Ω,F ,P) be a probability space carrying a one-dimensional Brownian motion B, whose P-augmented filtration is
denoted by F. Fix positive constants T and γ, and let ξ be a bounded FT -measurable random variable.

1) Show that the process
Yt := −γ log

(
EP[

e−ξ/γ∣∣Ft]), t ≥ 0,

is the first component of a solution to the BSDE with terminal condition ξ (at T ) and generator g with

g(z) := − 1
2γ z

2, z ∈ R.

2) Let b ∈ R. Show that the process

Yt := −γ
(
b2

2 (T − t) − bBt + log
(
EP[

ebBT −ξ/γ∣∣Ft]))
, t ≥ 0,

is the first component of a solution to the BSDE with terminal condition ξ (at T ) and generator g with

g(z) := − 1
2γ z

2 − bz, z ∈ R.

1) Let P := e−Y/γ. It is immediate to check that P is a (bounded) martingale in the Brownian filtration,
so that we can write using the martingale representation theorem

dPt = QtdBt,

for some Q ∈ H2(R,F,P). Then, applying Itô’s formula to f(Pt) where f(x) := −γ log(x) (recall that P is
positive by definition) gives the desired result.

2) The reasoning is the same: use 1) to get the dynamics for −γ log
(
EP[

ebBT −ξ/γ
∣∣Ft]), and then apply Itô

to get the dynamics of Y .

Exercise 3

Let (Bt)t≥0 be a Brownian motion defined on a probability space (Ω,F ,P) and (Xt)t≥0 the unique solution of the SDE

dXt = f(Xt)dt+ g(Xt)dBt, X0 = x,

where f, g : R −→ R are Lipschitz-continuous functions.

1) Find a non-constant function ϕ(x) ∈ C2(R,R) such that Yt := ϕ(Xt) is a local martingale. Moreover, derive a
SDE for (Yt)t≥0.

Hint: Prove and use that general solution of the ODE: y′f(x) + 1
2y

′′g2(x) = 0 is of the form

y(x) = a+ b

∫ x

0
exp

(
− 2

∫ u

0

f(v)
g2(v)dv

)
du, (a, b) ∈ R2.

2) Assume additionally that f is negative on (−∞, 0) and positive on [0,∞). Show that in this case, Y is a martingale.
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1) Applying Itô’s formula, we obtain that P–a.s., for all t ≥ 0

Yt = ϕ(Xt) = ϕ(x) +
∫ t

0
ϕ′(Xs)g(Xs)dBs +

∫ t

0

(
ϕ′(Xs)f(Xs) + 1

2ϕ
′′(Xs)g2(Xs)

)
ds.

Thus, we obtain that Y is a local martingale if and only if for any x ∈ R, ϕ(x) satisfies the following
ordinary differential equation

ϕ′(x)f(x) + 1
2ϕ

′′(x)g2(x) = 0.

It is easy to check by direct integration that the general solution of the above ordinary differential is of
the form

ϕ(x) = a+ b

∫ x

0
exp

(
− 2

∫ u

0

f(v)
g2(v)dv

)
du, (a, b) ∈ R2. (0.3)

For the second part, let ϕ(x) be of the form (0.3) with b ̸= 0 (i.e. a non trivial solution). We first observe
that ϕ is continuous and increasing, hence the inverse function of ϕ, denoted by ϕ(−1), exists. From 1),
we know that P–a.s. for any t ≥ 0

Yt = ϕ(Xt) = ϕ(x) +
∫ t

0
ϕ′(Xs)g(Xs)dBs. (0.4)

Thus, as Xt = ϕ−1(Yt), we get that Yt satisfies the SDE

dYt = (ϕ′ ◦ ϕ−1)(Yt)(g ◦ ϕ−1)(Yt)dBt, Y0 = ϕ(x).

2) As ϕ(X) is a continuous local martingale of the form (0.4), it is enough to check that for any T > 0

EP
[ ∫ T

0

(
ϕ′(Xs)g(Xs)

)2ds
]
< ∞,

to conclude that (ϕ(Xt))t≥0 is a true martingale. First, we observe that due to our additional assumption
on f being negative on (−∞, 0] and positive on (0,∞), we obtain that

sup
x∈R

∣∣ϕ′(x)
∣∣ ≤ |b|.

Moreover, as g : R −→ R is Lipschitz-continuous, there exists a constant k > 0 such that

|g(x)| ≤ |g(0)| + k|x|.

As for any (a, b) ∈ R2, we have (a+ b)2 ≤ 2(a2 + b2), we obtain that

g(x)2 ≤ 2g(0)2 + 2k2x2.

We conclude that there are constants C,D > 0 such that

EP
[ ∫ T

0

(
ϕ′(Xs)g(Xs)

)2ds
]

≤ C +DEP
[ ∫ T

0
X2
sds

]
.

But this is finite as (Xt)t≥0 is by assumption the strong solution of the SDE

dXt = f(Xt)dt+ g(Xt)dBt, X0 = x,

and therefore, for any T > 0

EP
[

sup
0≤t≤T

|Xt|2
]

= EP
[

sup
0≤t≤T

|Xt|2
]
< ∞.

Exercise 4
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1) Let (ft)t≥0 be an F-adapted, positive, increasing, differentiable process starting from zero and consider the fol-
lowing SDE

dXt =
√
f ′
tdBt. (0.5)

Show that the process Bft
is a weak solution of (0.5).

Hint: in other words, given a Brownian motion (Bt)t≥0 and a function f satisfying the previous assumptions,
there exists a Brownian motion (B̂t)t≥0, such that

dB̂ft
=

√
f ′
tdBt.

2) Recall that a solution of the SDE
dXt = −γXtdt+ σdBt, X0 = x, (0.6)

is called Ornstein–Uhlenbeck process. Show that an Ornstein–Uhlenbeck process has representation

Xt = e−γtB̃ψ(t),

where
ψ(t) := σ2(e2γt − 1)

2γ ,

and where (B̃t)t≥0 is a Brownian motion started at x.

3) Consider the SDE
dXt = σ(Xt)dBt, X0 = x, (0.7)

with σ(x) > 0 such that

G(t) :=
∫ t

0

ds
σ2(Bs)

,

is finite for finite t, and increases to infinity, that is G(∞) = ∞, P–a.s. Under these assumptions, the inverse of
G is well-defined, and we let

τt := G
(−1)
t .

Show that the process Xt := Bτt
is a weak solution to the SDE (0.7).

1) Given the assumptions made on f , it admits an inverse g. Let then

B̂t :=
∫ gt

0

√
f ′
sdBs.

By definition, we have that B̂ft
satisfies the required equation, so we just need to check that B̂ is a

Brownian motion. It is direct to check that this is a continuous local martingale and that[
B̂

]
t

=
∫ gt

0
f ′
sds = (f ◦ g)(t) − (f ◦ g)(0) = t,

and we can conclude by Lévy’s characterisation.

2) Both the Ornstein–Uhlenbeck process and X as defined in the question are continuous, centred Gaus-
sian processes. it thus suffices to compute the covariance function to make sure that their distributions
match. Recall that if X̃ is the Ornstein–Uhlenbeck process, we have for 0 ≤ s ≤ t

CovP[
X̃t, X̃s

]
= CovP

[
e−γt

∫ t

0
σeγudBu, e−γs

∫ s

0
σeγudBu

]
= e−γ(t+s)

∫ t∧s

0
σ2e2γudu = e−γ(t+s)ψ(s).

Then, using the covariance function for Brownian motion and the fact that ψ is non-decreasing

CovP[Xt, Xs] = e−γ(t+s)CovP[
B̃ψ(t), B̃ψ(s)] = e−γ(t+s)ψ(s),
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hence the result.

3) The operator associated to the SDE is given by

Lf(x) = 1
2σ

2(x)f ′′(x).

We want to show that Xt = B(τt) is a solution to the martingale problem for L. Take f ∈ C2
0 , then we

know that the process

Mt := f(Bt) −
∫ t

0

1
2f

′′(Bs)ds,

is a martingale. Moreover (τt)t≥0 is an increasing sequence of stopping times and so the process Mτt is
a martingale. Now we want the find an explicit expression for the process τ. Using the formula for the
derivative of the inverse function,

(G(−1))′
t = 1

G′(G(−1)
t )

= 1
σ2(B(G(−1))t)

= σ−2(Bτt). (0.8)

From (0.8) we see that (τt)t≥0 satisfies dτt = σ−2(Bτt
)dt. Now perform a change of variable s = τu to obtain

that the process

f(Bτt
) −

∫ t

0

1
2σ

2(Bτu)f ′′(Xu)du,

is a martingale and so (Xt)t≥0 solves the martingale problem for L.
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